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Abstract-The physicai mechanism of the dry-out in gravity-assist heat pipes with capillary flow is analysed. 
Two contrary types of dry-out are shown to exist. The ‘axial dry-out’ arises from a lack of hydrostatic 
driving force and appears when the heat flux increases. For the ‘azimuthal dry-out’ it is just the opposite. The 
basic relations for the occurrence of these dry-outs are derived. Their evaluation is explained in an example. 
Methods for preventing the a~muthal dry-out are discussed. An Appendix contains some critical comments 

on the role of inertia forces and entrainment in heat pipes 

ratio of 7 to ii;‘. 
effective cross iection of the vapour 
channel ; 
fiction of Re,, defined by equation (22); 
inner diameter of the capillary structure; 
hydraulic capillary diameter ; 
acceleration due to gravity; 
evaporator length ; 
specific heat of vaporization of the working 
fluid ; 
number of liquid-flow channels ; 
vapour pressure; 
capillary pressure ; 
maximum capillary pressure; 
maximum capillary pressure of the coarse 
part of a two-step graded wick ; 
maximum capillary pressure of the fine 
pore part of a two-step graded wick ; 
hydraulic pressure difference along the 
evaporator ; 
pressure in the Iiquid at the liq~d-vapour 
interface; 
lowest and highest value of P, at any axial 
position x ; 
PI for completely filled capillaries; 

P,, P,/, lowest and highest value of PIF at any axial 
position z; 
pressure on the liquid-vapour interface 
from the vapour side; 
axial heat flux in the transport zone; 
radial Reynolds number; 
radii of curvature of the liquid-vapour 
interface; 
vapour velocity normal to the interface; 
axial vapour velocity; 

average of w and w2 over the cross section 
of the vapour channel; 

Z, axial coordinate; 

zD, axial coordinate of the dry point ; 

ZW9 axial coordinate of the wet point. 

Greek symbols 

tilt angle of the heat pipe against the 
horizontal ; 
surface tension of the working fluid ; 
a~muthal dynamic liquid pressure drop; 
difference between Pl at wet and dry 
point ; 
difference between P,, at dry and wet 
point ; 
viscosity of the vapour ; 
viscosity of the liquid ; 
wavelength of capillary waves on a 
liquid-vapour interface; 
density of the vapour; 
density of the liquid. 

1. IN~ODu~ON 

TIIE DRY-OUT of the capillary structure is a pheno- 
menon of great concern for heat-pipe design as it can 
seriously deteriorate the heat-transfer characteristics 
of these devices. The purpose of this paper is to better 
understand the physical mechanism of dry-out pheno- 
mena and to put the conditions for their occurrence in 
mathematical form. 

The anaIysis will deal with gravity-assist heat pipes 
having a capillary structure [l-4]. In gravity-assist 
heat pipes the presence of a capillary structure is not 
obligatory as in purely ~pillary-drjven heat pipes. 
Nevertheless, most gravity-assist heat pipes do have a 
capillary structure in order to protect the liquid 
against the shear stress from the counter-flowing 
vapour and to help keep the surface of the evaporator 
wet. 
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Boiling will not be considered, nor will liquid flow 
outside the capillary structure. For this reason the heat 

pipes are, in general, assumed to contain no surplus 
liquid but just enough to saturate the capillary struc- 
ture. However, a qualitative discussion will be in- 

cluded on the role of surplus liquid in the dry-out 
process and the problem of the transition from capil- 
lary flow into another flow mode. 

To begin with, the condition for mechanical 

equilibrium at the liquid-vapour interface will be 
formulated (Section 2). After explaining how the dry- 

out conditions will be derived herefrom (Section 3), the 
pressure diagrams of the horizontal heat pipe (Section 

4) and the gravity-assist heat pipe (Section 5) are 
discussed firstly for normal operation without a dry- 
out. Next, Sections 6 and 7 deal with the azimuthal 
dry-out and methods for preventing it. Section 8 

contains a discussion of the axial dry-out and the basic 
equation for its occurrence. In the final section an 

example of how the dry-out heat flux can be derived 
herefrom is given. 

2. MECHANICAL EQUILIBRHJM CONDITION 

The dry-out is primarily a question of the mechani- 

cal equilibrium at the liquid-vapour interface, which 
consists of the balance of three pressures P,[, P, and I’,. 

P,, is the pressure acting on the interface from the 
vapour side. It is the sum of the vapour pressure P and 

the kinetic reaction pressure pui of the evaporating- or 
condensing molecules 

P,., = P + pv,“. (1) 

P, is the pressure acting on the interface from the liquid 
side. Similarly to (l), P, is the sum of the liquid pressure 
and the kinetic reaction pressure of the liquid. How- 

ever, as the liquid velocities are much smaller than 
the vapour velocities (except near the critical point), 
the kinetic reaction pressure of the liquid can generally 
be neglected and P, identified directly with the liquid 

pressure. Finally P, is the capillary pressure, which is 
generated in the interface. It depends on the surface 
tension y and the curvature l/r, + l/r, of the interface 
according to the classical Young-Laplace relation 

P, = y(llr, + l/r& (2) 

P, is counted positive when it acts in the same direction 
as P,. Hence a concave curvature of the interface 

towards the vapour has to be described by positive 
radii of curvature, a convex curvature by negative 
ones. The mechanical equilibrium at the 

liquid-vapour interface then requires that 

P”, - P, = P,. (3) 

For given capillary geometry, surface tension and 

wetting angle, the capillary pressure P, can vary within 
certain limits by a displacement of the interface. The 

upper limit P,, of the capillary pressure is reached 
when the interface is at a position where its curvature 

becomes a maximum. P,, can be calculated or mea- 

sured relatively easily (apart from the problem of 

impurity enrichment at an evaporating meniscus. 
which results in uncertainties about the effective values 
of surface tension and wetting angle) 

More problematical is the lower limit of the capil- 
lary pressure. One can design capillary openings where 
the minimum curvature of the interface and, hence, the 

minimum capillary pressure is negative. The menisci 
would then bulge towards the vapour side. This occurs. 

for example, if a cylindrical capillary ends in x fiat 
surface and the wetting angle has finite values. The 
question is, however, whether such an arrangement of 
separated menisci would be stable under heat-pipe 

conditions, or whether, by vapour shear strcah and 
condensation on the capillary structure. it would be 

transformed into a coherent liquid film on the capillar! 
structure. Due to the relatively small curvature of such 
a film the corresponding minimum capillary pressure 
would then, in a first approximation, be zero. In the 
following analysis we shall assume such a minimum 
capillary pressure equal to zero. This 15 a safe estimate 
in the sense that it will lead easier to a dry-out than a 

negative minimum capillary pressure would do. Hence 
we have 

0 I P, i P,.,,,. (41 

It should be noted that the assumption of a Lero 
minimum capillary pressure implies that the heat pipe 
contains enough liquid to saturate the capillary struc- 
ture. Saturation is the equilibrium between the liquid 
in the capillary structure and some surplus liquid. This 

means the menisci adjacent to the surplus liquid must 
have the same curvature as the surface of the latter 

Saturation of the capillary structure. therefore. is 

synonymous with the fact that somewhere the 
liquid--vapour interface is flat like the surface of the 

surplus liquid or, if the curvature of the latter can be 
neglected, that somewhere the capillary pressure IS 

zero. 
Combining equations (3) and (4) it follows that at 

any liquid- vapour interface in the heat pipe 

0 5 P,, - P, 5. P .,),. (“1 

It will turn out that this condltlon essentially de- 
termines the dry-out. 

3. THEORETICAL APPROACH OF I’HF DRY-OI ‘I 

For finding, theoretically, the dry-out conditions 

one could consider a similar proceeding as in the 
corresponding experiment. Thia would essentially 
mean assuming the heat pipe and its temperature (at 
one point) as given and changing the heat flux. The 
inconvenience of this approach is that both P,,, and P, 
depend on the heat flux. This makes P,., -- PI a rather 
complex function of the heat flux. 

A theoretically more transparent method, which will 
be used here, is to find the dry-out conditions by 
decreasing the surface tension y. keeping heat flux, 

temperature and all other design- and operating 
parameters constant. To begin with. it is assumed that 
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the heat pipe is in a steady state and the capillary 
structure is compIetely filled with liquid. Then a 
stepwise decrease of the surface tension y is made 
which causes, due to equation (2), a corresponding 
decrease of the capillary pressure P, and, therefore, 
disturbs the mechanical equilibrium (3) at the 
liquid-vapour interface. This will entail no reaction 
on the vapour side, as the vapour-flow rate is de- 
termined by the constant heat flux. But there will be a 
reaction on the liquid side, which re-establishes the 
equilibrium (3), i.e. the liquid flow rate will change so 
that the decrease of PC is balanced by a corresponding 
increase of Pi- This means the heat pipe enters a non- 
steady state where the unbalance between the vapour- 
and liquid-flow rates leads to a change of the liquid 
distribution in the heat pipe and, therefore, to a 
displacement of the liquid-vapour interface. This, in 
turn, can change both the curvature of the menisci and 
the liquid-flow resistance and thus modify PC and Pi. 
The displacement, however, will generally have only a 
marginal effect on P,, unless a dry-out occurs in the 
evaporator, which changes the axial vapour flow rate. 
The variation of P, and P1 will then lead to further 
changes of the liquid flow rate, etc. The process may 
eventually lead to a new stationary state. For the 
present purpose it is not necessary to follow this 
complicated transition in detail. The main task will be 
to discover the new stationary state or to proveits non- 
existence. 

The above description shows that approaching the 
dry-out by decreasing y leaves P,, essentially constant, 
which simplifies the discussion. Furthermore, it be- 
comes apparent that it is important how the position of 
the interface, its curvature and the liquid Row re- 
sistance are interrelated. To specify these properties of 
the capillary structure the following definitions will be 
used : 

Unerased ~apil~~ri~s. A displacement of the 
liquid-vapour interface towards the inside of the 
capillary structure causes an increase of the curvature 
and of the liquid-flow resistance in such a way that at 
first the curvature rises from zero to maximum with 
negligible growth of the liquid flow resistance, and 
then the latter increases to infinity without further 
change of the curvature. 

Graded capillaries. The same displacement of the 
interface causes an increase of the curvature and of the 
liquid flow resistance in such a way that the Row 
resistance becomes already infinite when the curvature 
reaches its maximum. 

l~t~coffnec~e~ e~~i~~arjes. The liquid can fIow in any 
direction. If the capillaries are not interconnected the 
liquid flow is essentially limited to one direction. 

Here are some examples of capiltary structures 
which, with some idealization, can be described by the 
above definitions : 

Ungraded, interconnected: thick screen wicks. 
Ungraded, not interconnects : deep U-grooves, 
Graded, interconnected : coarse screen wick on top 

of a fine pore structure; crossing V-grooves (knur- 
led surface). 
Graded, not interconnected : V-grooves, shallow 
u-grooves. 

Reference should also be made to capillary struc- 
tures where the displacement of the interface towards 
the inside raises the flow resistance but decreases the 
curvature of the interface. One could call them ‘in- 
versely graded’. To this category belong, for example, 
all capillary structures of the artery type [5], as well as 
structures composed of a fine pore cover on top of a 
coarse capillary structure and grooves with increasing 
width towards the bottom. Inversely-graded capillary 
structures allow the simultaneous realization of low 
flow resistances and large capillary pressures and 
hence to carry large heat fluxes without the help of 
gravity [6]. However, they can also lead to stability 
problems and the priming of inversely-graded capil- 
lary structures under gravity is generally difficult. They 
have found little interest for terrestrial appli~tions 
and will, therefore, no longer be considered here. 

4. PRESSURE DIAGRAMS OF THE 
~ORIZO~AL HEAT PIPE 

After these preparatory remarks the dry-out me- 
chanism will be investigated for a cylindrical heat pipe 
with a uniform ungraded interconn~ted capillary 
structure, tilted at an angle /I with respect to the 
horizontal and consisting of evaporator, transport 
zone and condenser (Fig. 1). To begin with, the heat 
pipe is assumed to be in a steady state and PC, larger 
than any value of P,, - Pl so that the capillary 
structure is completely fiRed with liquid. For this 
condition a plot will be made of PO8 and Pi over the 
whole liquid-va~ur interface. It is most convenient to 
plot Pvz and P; over the axial coordinate z of the 
interface and to use the azimuthal position of the 
interface as a parameter. A horizontal heat pipe will be 
considered first (B = 0). 

FIG. 1. Beat pipe with coordinates. 



For relatively long heat pipes the vapour pressure In the liquid flow the inertia forces can generally be 
can be assumed to be constant over the cross section of neglected (for exceptions see Appendix 1). Therefore. 
the pipe [7]. Then the vapour pressure P can be similar to the vapour-pressure curve P in Fig. 2a, the P, 

presented by a single curve. For radial Reynolds band shows a steady decrease in Row direction, The 
numbers Re, cc 1, i.e. small heat fluxes, the vapour Row absolute position of the P, band in the diagram 1s 
is essentially subject to viscous forces only, so that the determined by the LHS ofcondition (5) together with 
vapour pressure shows a steady drop along the heat the assumption of a saturated capillary structure: 
pipe (dashed curve in Fig. 2a). For higher heat fluxes. condition (5) excludes that P, is larger than PCi_ and 
more precisely for Re, >> 1 (see Appendix I), the saturation means, as explained above, that there is at 
vapour flow is dominated by inertia forces, which lead least one point with P, = 0 and, therefore. f’, j = P,. St) 
to a partial pressure recovery in the condenser and to a the band of the P, curves lies below the P,., curve and 
change of the slope of the vapour-pressure curves at touches the latter at least in one point 
both ends of the transport zone [7] (dashed curve in These touching points will turn out lo be important. 
Fig. 2b.). The absolute position of the vapour-pressure Following a proposal of van Andel [8] we call them 
curve in the pressure diagram is determined by the ‘wet points’. If the heat pipe contains surplus liquid it 
temperature at one point of the interface and the will tend to be accumulated at such wet points. Figure\ 
(approximate) thermodynamic equilibrium between 2a and 2b each show one wet point: they occur in both 
vapour and liquid. Adding to P both in the evaporator cases at the upper edge of the P, band. once at the end 
and condenser the kinetic-reaction pressure correction and once at the beginning of the condenser. 
pri one obtains the P,,, curve (solid line in Figs. 2a and The curvature of the liquid vapour interface adJusts 
2b). itself in such a way that, according to equation (3), the 

In contrast to P,,, the liquid pressure P, depends on capillary pressure P, becomes equal to the difference 
the azimuthal position because of hydrostatic forces. between P,,, and P,. The maximum curvature is seen to 
Hence, there is an infinite number of P, curves. They lie occur at the top of the beginning of the evaporator. 
within the hatched band in Figs. 2a and 2b. If there is 

no azimuthal flow and, therefore, no dynamic azim- 5. PRESSURE DIAGRAMS OE IHI. 

uthal pressure gradient, the width of the P, band will be GRAVITY-ASSIST HEAT PIPE 

equal to the hydrostatic pressure orgd over the dia- Now if the horizontal heat pipe of the preceding 

meter d of the vapour channel. If there is a downward section is tilted to a gravity-assist position, the I’,., 
azimuthal flow, this superimposes in flow direction a curve will not change, but the hydrostatic force in ; 
negative pressure gradient from viscous forces on the direction will superimpose a negative pressure gra- 
positive hydrostatic pressure gradient and thus de- dient on the positive gradient of the liquid-pressure 
creases the width of the band. Correspondingly, an curves in Figs. 2a and 2b. As a result the slope of the F’; 
upward azimuthal flow would increase the band width. band will become less positive or even negatice. The 
If the dynamic azimuthal pressure gradients can be latter case is shown schematically for several heal 

neglected the upper edge of the P, band corresponds in fluxes in Fig. 3. 
each case to the lowest point of the cross-section, the Figure 3a represents the limiting case of a zero heat 

lower edge to the highest one. flux, i.e. zero dynamic pressure gradients. Then the I’.,! 
curve is simply a horizontal line and the liquid pressure 

WET POINT 

I 
Figures 3b and d show the varlatlon of the pressure 

)I 

EVAPORATOR TRANSPORT 

diagratn of Fig. 3a with rising hzdt flux. The P,, curve 
CONOEHSER 

ZONE 
will transfortn at first into a curve as in Fig. 2a (not 
shown in Fig. 3). Then, at RK, x 1, it assumes the shape 
of that in Fig. 2b. The absolute steepness of the 
different parts of the P,, curve increases with the heat 
flux, The liquid flow superimposes a positive dynamic- 
pressure-gradient on the negative hydrostatic gradient 

so that the hatched P, band becomes lebs steep with 
increasing heat flux (the dashed line repeats fat 
comparison the purely hydrostalicgradient of Fig. 3a), 

EVAPORATOR IRANSPORT CONOENSER As a result of these variations the wet point is seen 10 
ZONE shift from the beginning of the evaporalor (Figs. 3a and 

FIG. 2. Pressure diagrams of horizontal heat pipes at different 
3b) to the end of the evaporator (Fig. 3c) and finally to 

_ ,1 ,./ 
heat fluxes (scnemarlc). the beginning of the condenser (Fig. 3d). I bus at 
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is identical with the hydrostatic pressure. So the P, 
band is straight and has a constant width of p,ydcos ii 

corresponding to the hydrostatic pressure difference 

over the diameter of the vapour channel. In contrast to 
Fig. 2 the wet point now occurs at the beginning of the 

evaporator. 
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FIG. 3. Pressure diagrams of gravity-assist heat pipes at 
different heat fluxes (schematic). E = evaporator, 

TZ = transport zone, C = condenser. 

sufficiently high heat fluxes the pressure diagram of 
the gravity-assist heat pipe begins to show similarity 
with the diagram of a horizontal heat pipe shown in 
Fig. 2b. 

The most striking difference between Figs. 2 and 3 is 
the fact that the pressure diagram of the gravity-assist 
heat pipe can have a wet point at the beginning of the 
evaporator. This corresponds to the familiar obser- 
vation that surplus liquid can form a pool at the lower 
end of a gravity-assist heat pipe. Another interesting 
fact is that the PV1 curve and the P, band may both 
converge or diverge in the z direction. In the examples 
of Fig. 3 there can be as many as two zones of diverging 
and one of converging in the same heat pipe. A zone of 
converging means that the liquid could not return 
against the pressure from the vapour without the help 
of the capillary force. It therefore, signalizes a lack of 
hydrostatic driving force. Similarly, a diverging of P,, 
and P, in the z direction indicates a surplus of 
hydrostatic driving force. So one has to deal with two 
physically quite different transport situations. In pre- 
vious theoretical work on transport limitations in 
capillary-driven heat pipes the attention was directed 
only towards the zone of converging. Figure 2 shows 
that for capillary-driven heat pipes, in fact, the con- 
verging dominates. In contrast to this, it appears from 
Fig: 3 that gravity-assist heat pipes can also have zones 
with strong diverging, especially at low heat fluxes. The 
following analysis will show that both the converging 
and diverging of Put and P, can lead to a dry-out, but of 
very different nature. 

6. THE AZIMUTHAL DRY-OUT 

The dry-out will now be approached by a stepwise 
decrease of y, which is accompanied by a correspond- 
ing decrease of P,,. The discussion will be based on the 
pressure diagram of Fig. 3b, showing a wet point at the 
beginning of the evaporator, two zones of diverging P,, 
and P, and one zone of converging. 

As long as P,, remains everywhere larger than 
P,, - P, the new stationary state, which the heat pipe 
will reach after a decrease of y, can easily be indicated. 
It is characterized by an increased curvature of the 
menisci and the same pressure diagram as before. The 
increased curvature cancels the decrease of y and leads 
to the old values of PC. P,, remains constant in any case, 
as explained in Section 3. Finally P, does not change 
because, for the assumed ungraded capillary structure, 
the change of curvature of the menisci has a negligible 
effect on the liquid-flow resistance. The new stationary 
state shows no dry-out so far. 

Upon further decrease of y resp. P,,, namely when 
PO becomes smaller than the maximum of P,, - P,, a 
second type of transition appears. This happens in Fig. 
3b at first at the right hand side of the pressure 
diagram. The condition (5) now requires a decrease of 
P,, - P,, hence a change of the PI band. There exists, in 
fact, a corresponding stationary state, which is charac- 
terized by menisci receded into the capillary structure. 
The receding increases the liquid flow resistance and, 
therefore, the liquid pressure gradient in z direction. 
This means that the diverging of P,, and P, and hence 
the difference P,, - P, becomes smaller. The degree of 
receding depends on how much P,, - P, has to be 
decreased. For the assumed ungraded structure the 
capillary pressure PC and, therefore, also P,, - P, has 
the same value P,, for all receded menisci independent 
of how deep they recede into the capillary structure. 
Therefore, all receded menisci are presented by a single 
P, curve, which runs parallel to the Pul curve at a 
distance equal in value of PC,. All unreceded menisci, 
for which PC < P,,, are accordingly represented by P, 
curves above that for the receded menisci. So the lower 
edge of the modified PI band runs parallel to the P,, 
curve at a distance corresponding to P,, and the width 
of the P, band is decreased to the value of the 
maximum azimuthal-pressure difference between the 
unreceded menisci of a cross section. 

Figure 4 shows the pressure diagram of Fig. 3b with 
two additional pressure bands, Pi and P;’ for the 
receded menisci, which correspond to two different 
values of P,,. The original P, band of Fig. 3b describing 
the liquid pressure for the unreceded state of the 
menisci is now called P,,. The Pi band has only a single 
zone with receded menisci. It begins at z3 in the second 
zone of diverging, where the spacing between the P,, 
curve and the lower edge of the P,, band becomes 
larger in value than the maximum capillary pressure 
and it continues to the end of the condenser. The P; 
band corresponds to a still smaller value of PC, and 
shows two zones with receded menisci. This pheno- 
menon is caused by the fact that the diverging of P,, 
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FIG. 4. Pressure diagram for an azimuthal dry-out 
(schematic). 

and the P, band is interrupted by a zone of converging 
extending from zD to zw. The first receding of the 
menisci begins at zr. There the lower edge of the P; 
band starts to run parallel to the P,, curve at a distance 
corresponding to P,,. This, however, cannot continue 
beyond zD because then a liquid pressure band parallel 
to P,, would run steeper than the original P,, band, 
which is impossible because the liquid flow resistance 
cannot be smaller than in the case of unreceded 
menisci. Hence, from z~, on the menisci are no longer 
receded and the P; band again assumes the slope of the 
original P,, band. So the P; band runs parallel to P,, 
through the whole zone of converging up to the point 
z2 in the next zone of diverging, where once again the 
spacing between P,r and the lower edge of the P; band 
would become larger in value than P,, if the P; band 
continues parallel to P,,. There the second zone of the 
receded menisci begins, extending to the end of the 
condenser just as in the example Pi. 

The question remains whether in the new steady 
state some of the menisci may have receded down to 
the bottom of the capillary structure, so that a dry-out 
exists. This can in fact happen. It was pointed out that 
any receded meniscus is represented by the lower edge 
of the PI band. So the liquid pressure at all receded 
menisci on the same circumference has the same value. 
This is impossible for menisci which are situated at 
different elevations, unless the hydrostatic pressure 
differences between them is compensated by the dy- 
namic pressure gradient of a downward azimuthal 
flow. Such a com~nsation evidently occurs in the 
condenser where the continuous generation of liquid 
all over the capillary structure prevents a dry-out. So 
there is a continuous azimuthal downward flow in the 
condenser, and the menisci recede only until the 
dynamic- and hydrostatic-pressure gradient in the 
azimuthal direction ba!ance each other. However, if 

there is no downward azimuthal Iiquid Bow or even MI 
upwards one, as is likely to happen in the rvaporator. 
the receding of the menisci will lead to a dry-out ofthc 
upper part of the circumference and the liquid Row will 
be concentrated on the colnp~ete~~ filled lower part oi- 
the capillary structure, 

This ‘azimuthal dry-out’ is purely a question of thy 
azimuthal distribution of the liquid few and no: of an! 
lack of total axial liquid return. In principle, the hc;n 
pipe can then be operated atationarily v&hour a;:> 

change of the axial heat flux, provided that the heating 
is concentrated on the remaining wc‘t region of each 
circumference. This outcome is not surprising. if one 
looks at the origin of the azimuthal dry-out, nameiy 
the diverging of P,, and P,,, which Incan\ an exccsh &I! 
hydrostatic driving force. 

As long as the azimuthai dry-out occurs outside the 
evaporator, it does not affect the heat transfer. There- 
fore. the next question is: when wifl the azimuthai dry- 
out occur in the evaporator? The answer is c~%.ient 
from Fig. 4: the difference P,., .-- i’ir must increase in 
the evaporator and on the right hand side of the wet 
point to more than P,,. Figure 1 shows that this grtl; 
easier as the heat flux becomes smaller. The a~imuth:G 
dry-out, therefore, is a phenomenon which is most 
likely to occur during start-up and which can disap- 

pear at higher heat fluxes. a behaviour just opposrte zo 
the familiar dry-out of capillary-driven heat pipe\ 

When the heat pipe is operated with constant- 
temperature heating, an azimuthal dry-out causes an 
automatic shifting of the whole heat input to the 
remaining wet part of the evaporator. 11~ this case the 

azimuthal dry-out may be of no concern. as it ~.~~ty 
rest&s in a certain decrease of the heat-transfer 
coefficient. For constant-power heating. however, the 
azimuthal dry-out leads to a hot spot and eveniualt:, 

also to a rewetting problem at higher heat Ruxe~, when 
the dry-out should, in theory. disappear. So ?hc 
question arises how an azimuthal dry-out couid be 

prevented. 
For the ungraded ~nterconn~~~d capillary structure 

the answer is shown by Fig. 3a : the maximum capillar\ 
pressure has to be larger than the maximum h:,- 
drostatic pressure difference in the evaporator. i.c 

P,, 2 l,,g(l, sin [I + ilcos /ii. ihi 

in other words, the static capillary rrsc must exceed the 
highest point of the evaporator, a condition. which for 
larger elevations in the evaporator, may be dif~cu~~ to 
satisfy. 

Another possibility to prevent azimuthat dry-outs IS 

to use a different capillary structure. One could think 
of non-~nterconn~ted structures. such as axially run- 
ning grooves without any azimuthal connection. This 
evidently impedes the azimuthal redistribution of the 
axial liquid flow, which is necessary for the occurrence 
of an azimuthal dry-out. But then another problem 

appears, namely that from each groove rmly the 
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amount of liquid which is condensed into it can be 
evaporated. Hence for a non-interconnected capillary 
structur&heating and cooling must be balanced for 
each groove in order to avoid a dry-out of the 
beginning of a groove. This is difficult to achieve even 
in the seemingly simple case of axially symmetric 
heating and cooling, because the axial symmetry can 
be disturbed by a leakage of liquid from the upper to 
the lower grooves [9]. An azimuthal connection of the 
grooves at the beginning of the evaporator brings 
some help by allowing a liquid flow, which can 
compensate heating-cooling imbalances or azimuthal 
leakage. This method is efficient for horizontal heat 
pipes of not too large diameter, but it may be of no help 
for long gravity-assist heat pipes where the compensat- 
ing liquid flow would have to overcome important 
gravity effects. 

A more promising method of preventing azimuthal 
dry-outs is the use of inter~onn~ted graded capillary 
structures. The grading will allow the elimination of 
the weak point of the ungraded capillary structure, 
which is that the capillary pressure cannot vary 
azimuthal when the menisci are receded. This will be 
illustrated by an example. Let us consider an in- 
terconnected capillary structure with a two-step grad- 
ing, which consists of a coarse wick on top of a fine- 
pore wick. The task of the coarse wick is the axial 
liquid transport, that of the fine-pore wick the azim- 
uthal liquid distribution in the region of the azimuthal 
dry-out of the coarse wick. Figure 5 shows schemati- 
cally the corresponding pressure diagram in the evap 
orator. For simplicity the vapour pressure drop has 
been neglected, i.e. the P,, curve is a horizontal line, 
The upper part of the hatched area gives the liquid 
pressure in the wet part of the coarse wick. At zt the 
lower edge of the P, band reaches the maximum 
possible distance from the PnI curve, given by the value 
of the maximum capillary pressure (PC,), of the coarse 
wick. This is the beginning of the azimuthal dry-out of 

(WET PART Of COARSE WICK) 

“ \ ‘P, (FIIIE PURE WICK BELOW 
\ \ DRY PART OF COARSE WICK) 

HYDROSTATIC i\, 

PRESSURE \ 
\ 

\ 

*t 

EVAPORATOR 
1 

FIG. 5. Pressure diagram for a two-step graded capillary 
structure (schematic). 

the coarse wick, which raises the axial liquid-flow 
resistance until the lower edge of the Pi band of the 
coarse wick runs parallel to the P,r curve. The band 
width, representing the azimuthal liquid-pressure dif- 
ference over the remaining wet part of the coarse wick, 
is correspondingly reduced. 

In the dry part of the coarse wick the menisci are 
receded into the fine-pore wick. The lower part of the 
hatched area gives the liquid pressure in this region. 
The figure shows the increase of the width of the Pt 
band by the dynamic pressure drop AP, from the 
upward azimuthal flow in the fine-pore wick. To keep 
the entire evaporator wet the maximum capillary 
pressure (PC,), of the fine-pore wick must be larger 
than any difference P,, - PI in the evaporator. Figure 5 
shows that for this purpose it is sufficient to make 

U’,,), 2 (P,,), + P&cosB + AP,. (7) 

This condition is easier to fulfil than condition (6) 
because it is independent of the evaporator length ii,, 
Therefore, even for very long evaporators, only a 
relatively small capillary pressure (PC,), is necessary. 

It must be noted that in the foregoing consideration 
the fine-pore wick has tacitly been assumed to have an 
infinitely-large axial-flow resistance. If it has only a 
finite resistance, there will be a heat flux below which 
even a complete azimuthal dry-out of the coarse wick 
could not produce the required increase of the axial 
liquid-flow resistance. Then also an azimuthal dry-out 
of the fine-pore wick would occur. In order to limit this 
dry-out to very low heat fluxes, where the correspond- 
ingly low heating rates may hardly cause an inaccept- 
able superheating of the evaporator, care should be 
taken to make the fine-pore wick no thicker than 
required by the azimuthal transport requirements. 

8. THE AXIAL DRY-OUT 

Let us now return to Fig. 4 and examine the 
consequences of a further decrease of y resp. PC,. The 
heat input is assumed to be concentrated on the wet 
region of each circumference. This leaves the P,, curve 
constant, apart from a change in the correction pu,” in 
the region of the azimutha dry-out. 

At first there is no qualitative variation. The Pt band 
rises further and the zones with receded menisci extend 
in length. This happens until the upper edge of the P, 
band touches the P,, curve at zw thus creating a second 
wet point as shown in Fig. 6. Then 

AP, + APr = P,, c-9 

where - AP, is the liquid-pr~sure difference between 
the point DP and WP of the liquid-vapour interface 
and BP,, the corresponding pressure difference on the 
vapour side of these two points. DP will be called ‘dry 
point’ in contrast with the wet point WP (the pressure 
balance at the dry point will in fact be found to 
determine a dry-out which, however, occurs generally 
at another location; the term ‘dry point’ must, there_ 
fore, not be misinterpreted). 
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FIG 6. Pressure diagram for an axial dry-out (schematic). 

Now the LHS of equation (5) excludes a further rise 
of the PI band at zw. Upon further decrease of P,, the 
condition (5) could still be satisfied in the two zones of 
diverging Pul and P, by continued receding of the 
men&i, but a difhculty arises in the zone of con- 
vergence between zD and zw. Condition (5) requires a 
rise of PI in this zone, beginning with the lower edge of 
the P, band at z& In thestationary state this could only 
be achieved by a decrease of the axial liquid-flow 
resistance between zfJ and zw. This is evidently irn- 

possible for capillary flow, because the capillary struc- 
ture in this zone is already completely filled with liquid 
and the flow resistance is, therefore, at its minimum. A 
decrease of the liquid-flow resistance can only be 
achieved by creating an additional flow path outside of 
the capillary structure, so there no longer exists a 
stationary state in the capillary flow mode when P,, 

becomes smaller than the value given by equation (g). 
Now the question is : where will the non-steady state 

lead to? In Fig. 6 a decrease of y and the corresponding 
rise of the P, band make the liquid pressure drop from 
zD to zw larger, This means that less liquid is transpor- 
ted through this zone than before. Therefore, further 
downstream from zD, there will be a decrease of the 
liquid inventory. In detail the consequences depend 
on whether or not there is a pool of surplus liquid at the 
bottom of the heat pipe. No pool will exist if the heat 
pipe either contains no surplus liquid or if there is no 
wet point at the beginning of the evaporator, where the 
surplus liquid could be accumulated. This happens for 
horizontal heat pipes (see Fig. 2) but also for gravity- 
assist heat pipes with a pressure diagram as in Fig. 3c 
or 36. In ail these cases the lack of axial liquid return 
will result in a dry-out at the downstream end of the 
liquid flow, i.e. usually the beginning of the evaporator. 
This will be called an ‘axial dry-out’. It is in several 
respects just the opposite of the azimuthal dry-out : the 
axial dry-out is caused by the converging of P,, and P, 

and not by the diverging, this means by a lack of 
hydrostatic driving force instead of an excess; its 
occurrence is promoted by an increase of the heat flux 
rather than by a decrease (see Fig. 3) and the heat pipe 
can no longer be operated stationary without a change 
of the asial heat flux. 

It the heat pipe contains surpIus liquid and has a wet 
point at the beginning of the evaporator, as in the 
pressure diagram of Fig. 6, then a pool will exist. In this 
case the part of the evaporator which is no longer 
reached by the reduced liquid return flow, will begin to 
draw liquid from the pool. So the transition into anon- 
steady state will reveal itselfat first as a lowering of the 
level of the pool. The soIume of liquid, which disap- 
pears from the pool, will be accumulated at the other 
wet point at z~. Now the question arises: can this 
liquid run down on the outside of the capillary 
structure’? The analysis of this flooding problem 1s 
beyond the scope of this paper. Only a few generic 
remarks shall be added in order to show some basrc 
alternatives. 

It is easy to specify a case when no flooding 13 
possible, namely when the hydrostatic force is not 
sufiicient to drive the liquid down against the rising 
pressure on the vapour side, even without the retarding 
action of vapour shear stress and liquid viscosity. This 
means 

If this condition is satisfied at the liquid downstr~~~~ 
side of z,++ then the accumulating surplus liquid at zLf 
cannot run down again. So the non-steady state will 
lead to a dry-out as soon as the pool has disappeared 
or its level has dropped too far down for drawing up 
enough liquid. 

Evaluation ofequation (9) shows that the heat fluxes 
required for this case can be fairly high. So the 
possibility has to be considered t.hat condition (9) is 
not satisfied. Then flooding becomes a quantitative 
question of the retarding action of the vapour slteat 
stress. If the film of surplus liquid is thin, vapour sheai 
produces a large retarding pressure gradient and 
prevents flooding. With continued transfer of the pool 
to zu. and thus increasing film thickness the retarding 
pressure gradient at first becomes smaller. But then 
additional retarding effects arise from the reduction of 
thecross section for the vapour flow and the instability 
of the liquid surface. The latter can result in stripping 
of droplets, which are carried upwards by the vapour. 
While such an entrainment of liquid has probably no 
influence on the axial dry-out of capillary-driven heat 
pipes, it may play an important role in gravity-assist 
heat pipes (see Appendix 2). 

In any case it cannot be excluded that tlooding may 
occur if condition (9) is not satisfied. Then the non- 
steady state will not lead to a dry-out but instead. after 
a certain quantity of the pool has been transferred, to a 
new stationary state characterized by a mixture of 
capillary flow and free flow outside the capillaries. 
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9. AXIAL DRY-OUT HEAT FLUX 

The condition for the axial dry-out in the capillary 
flow mode is given by equation (8). It is formally 
identical with the familiar basic equation of capillary- 
driven heat pipes. The novelty lies in the definition of 
the pressure differences AP,r and AP1. From Fig. 6 

AP,l = P&D) - P&w), (10) 

-AP, = P,(zD) - P,(z,). (11) 

The calculation of these pressure differences is not as 
straightforward as for capillary-driven heat pipes, 
because it requires the location of the dry- and the wet 
points and consideration of the influence of menisci 
receding on the PI band. 

For ungraded interconnected capillary structures 
this task can be greatly simplified by the assumption 
that the P, band between za and zW in Fig. 6 is a 
parallel displaced P,, band. This is not exactly true 
because the receding of the menisci will not be without 
influence on the liquid flow near the ends of the zone of 
unreceded menisci between zn and z2, but it can serve 
as a first approximation. Then equation (11) becomes 

-API = P,/(G) - P&W) (12) 

where P,, can easily be calculated. Furthermore, Fig. 6 
shows that the axial coordinates zD and zW are then 
determined by the beginning of the converging of P,, 

and P,, and by the end of the converging of P,, and Pl,, 
respectively. This rule holds when there is only a single 
zone of converging. It can, however, without too much 
difficulty be extended to more complex heat pipes than 
those considered here, where more than one zone of 
converging P,, and P,, may exist. So, expressing Pvr, 
pis and P,, as functions of the maximum heat flux Q,,, 
and the axial coordinate z, then determining zD and z,,, 
from the above rule and AP,, and AP, respectively from 
equations (10) and (12) one obtains from (8) the heat 
flux, Q,, at the axial dry-out limit. 

For graded interconnected capillaries with the two- 
step grading described in Section 7, one can proceed 
exactly as above, considering only the coarse part of 
the wick. For a general grading, however, the pro- 
cedure becomes more complex. Equations (8) (10) and 
(11) are evidently also valid for this case. As the liquid- 
flow resistance now changes with the curvature of the 
menisci and hence with the absolute position of the P, 

curves in the pressure diagram, it is necessary, for the 
calculation of P,, to know the wet point already. This 
may require an iterative procedure. Figure 3 shows 
that for small heat fluxes z,,, = 0. This case is, however, 
of no interest as an axial dry-out can only occur when 
the wet point lies at the end of the zone of converging 
P, and P,, and hence necessarily at some zW > 0, as 
shown by Figs. 3c, d and the limiting case of Fig. 6, 
with both a wet point at z = 0 and z,,, > 0. zD and zW 
are now determined, therefore, by the beginning of the 
converging of P,, and P, and by the end of the 
converging of P,, and P,, respectively, together with the 
condition that a wet point must exist at z,,,. Again this 
rule is limited to cases with a single zone ofconverging. 

The mathematical details of the evaluation of the 
foregoing equations depend strongly on the physical 
character of the respective flows and will be presented 
elsewhere. Just as an example a relatively simple case 
which has recently been discussed in the literature [2, 
lo] will be considered here. This case is characterized 
by the following assumptions : 

(1) Constant heating rate, i.e. the heat flux Q 
increases in the evaporator linearly with z 

Q=Qm;. 
h 

(13) 

(2) Negligible dynamic liquid-pressure drop and 
vertical operation (/3 = 90”), i.e. 

and 

P,, = P,, = P,, (14) 

(15) 

(3) Negligible kinetic reaction pressure pu,’ and 
dominating inertia forces in the vapour. 

The latter assumption necessitates that the radial 
Reynolds number is large compared to one, i.e. 

Re = 1% >> 1 
’ 27cqL lh . (16) 

Then for incompressible flow 

(17) 

where A is a correction of the order of 1 defined by 

7 
A=+ (18) 

and given explicitly in [ll]. 
(4) Wet point at the end of the evaporator as in Figs. 

3c or 6, i.e. 

zw = lh. (19) 

This necessitates that the vapour-pressure gradient 
at the beginning of the transport zone is larger than the 
gradient of P,,. Hence follows with equation (15) 

df’,, 
T ’ - P&b 

This can be written 

(21) 

where B is a correction between 1 and 1.66, which 
depends on the radial Reynolds number of the heating 
zone according to the approximate relation [7] 

B=l+ 
3.3 Re, 

18+SRe.’ 
(22) 
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Both assumptions (16) and (21) have to be verified u 
posteriori with the calculated heat flux Q,,,. 

According to the above given rule the dry point is 
determined by 

(23) 

Hence follows with (17), (15) and (13) 

-J&TQ$+,,=O. (24) 
h 

This equation gives the axial coordinate zD of the dry 
point as a function of Q,. Furthermore, one obtains 

from equation (10) by integration of (17), making use 
of equations (13) and (19) 

AP,, = A- Q:(, - $). 
A:t,pL2 

(25) 

Similarly it follows from (12) with equations (15), (14) 

and (19) 

(26) 

Inserting equations (25), (26) and z, from equation 

(24) into (8) and resolving for Q,,,, one finds 

where P, is the hydraulic pressure difference along the 

evaporator, i.e. 

ph = P&v (28) 

The result (27) is rather close to the earlier appro- 

ximate formula [2, lo] given by 

The difference between equations (27) and (29) consists 

in the P,,P,-term on the RHS of (27), which disappears 
both for P,, = 0 and P, = 0. The maximum deviation 
occurs for P, = 4P,,, where equation (29) gives a heat 

flux 13% too low. 

IO. CONCLUSIONS 

There are two types of dry-out, which can occur in 

gravity-assist heat pipes with capillary flow. They are 
in several aspects contrary to each other. The ‘azim- 
uthal dry-out’ is caused by an excess of hydrostatic 
driving force. It is characterized by a concentration of 
the liquid flow on the lower part of the cross section 
without any lack of axial liquid return. The heat pipe 
can then still be operated stationary without any 
change of the axial heat flux, concentrating the heating 
on the wet part of each circumference. The azimuthal 
dry-out appears with decreasing heat flux. The best 
way to prevent azimuthal dry-outs seems to be the use 
of graded capillary structures. 

In contrast with this, the ‘axial dry-out’ is caused by 

a lack of hydrostatic driving force. It appears with 
increasing heat flux as a result of the transition into a 
non-steady state, which is characterized by insufficient 
axial liquid return. A return from this non-steady state 
to stationary operation is no more possible without 
changing the axial heat flux. except for certain cases 
where a transition occurs into another mode of 

operation with combined capillary ilow and fret flow 
outside the capillaries. The axial dry-out is detcrmincd 
by the pressure balance only over that part of the heal 

pipe where the lack of hydrostatic driving force exists. 
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APPENDIX 1: INERTIA FORfXS 
IN HEAT PIPE FLOW 

For the calculation of the liquid pressure drop in heat popes 
it is usual to neglect inertia forces. This is justified if the radial 
Reynolds number. which is approximately the ratio of inertia 
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forces over viscous forces, is small compared to one. If the 
mass flow is equally distributed over N circular liquid flow 
channels, then [7] 

j+LIdQ 
2nihL N dz 

(30) 

As an example let us consider liquid sodium at 800°C. Then 
1/2nntL= O.O23cm/W. Assuming a linear heating rate of 
dQ/dz = 100 W/cm and a single liquid-flow channel, it fol- 
lows that Re, = 2.3. The example shows that inertia forces 
can in fact not always be neglected in liquid pressure 
calculations especially if there are only very few liquid flow 
channels. 

The action of inertia forces is well known from studies of 
the vapour flow in heat pipes. Evaluation of equation (30) 
shows that in the vapour the transition from viscous to 
inertia flow occurs at fairly low linear heating rates dQ/dz, 
roughly in the order ofO.l-1 W/cm for non-metallic working 
fluids and l-10 W/cm for liauid metals f71. Heat oioes 
operating below these limits can conveniently-be calcuiafed 
without consideration of inertia forces. However, care has to 
be taken not to use corresponding literature formulae beyond 
the above-mentioned limits; the limited validity of the 
formulae is unfortunately not always stated. 

APPENDIX 2: 

ENTRAINMENT IN HEAT PIPES 

The greatest uncertainty in the flow modelling of heat pipes 
is actually the question of entrainment, i.e. the stripping of 
droplets from the menisci in the capillary structure and 
carrying them with the vapour towards the condenser. Such 
an extra circulation of mass in addition to the 
evaporation-condensation cycle would influence the pres- 
sure gradient both in the liquid and the vapour and hence the 
dry-out limit. 

The concept of entrainment was already introduced more 
than 10 years ago by Cotter [12] who drew attention to the 
dynamic instability of the liquid-vapour interface. If there is 
an infinite liquid surface with a surface tension y under 
gravity-free conditions and vapour of velocity $ and density p 
flows over this surface, then the amplitude of a small 
departure from planarity with a wavelength I will grow 
exponentially with time if 

A>% 
pWZ 

The growth of the wave is assumed to lead to stripping of 
droplets from the crests of the undulations. So equation (31) 
describes the onset of entrainment from an infinitely large 
interface under gravity-free conditions. Cotter postulated 
that this equation would also describe the onset of entrain- 

ment from the menisci in a capillary structure. i would then 
not be the wavelength of a surface wave, but some function of 
the capillary geometry. 

Now, in a capillary-driven heat pipe the obtainable values 
of pW2 are limited by the capillary pressure. From the pressure 
diagrams in Fig. 2 it is evident that the maximum capillary 
pressure P,, is certainly larger than only the vapour-pressure 
drop from inertia forces in the evaporator, which is given by 
A$ [ll]. Hence 

P,, > ApG’. (32) 

Defining the hydraulic diameter d, of the capillaries by 

p 2 
cm *, 

ah 

equation (32) can be written as 

(33) 

The smallest value for A occurs at the sonic limit and is 1.11 
[ 111. Herewith from equation (34) 

271Y 
T 
PW 

> 1.74d,. (35) 

Comparison of equation (35) with the criterion (31) leads to 
the conclusion that in a capillary-driven heat pipe only waves 
can grow which have a wavelength 3, larger than 1.74d,, 
provided that there is an infinitely extended interface for their 
growth. Such a situation may exist, in a first approximation, if 
the heat pipe contains surplus liquid and a wet point exists at 
z 7 0 as shown in Fig. 2b. An entrainment from the liquid film 
around zrr would in this case, however, influence only the 
pressure diagram on the vapour downstream side of the wet 
point, which is of no concern for the axial dry-out limit. 
Entrainment can have an effect on the axial dry-out limit only 
if it occurs on the vapour upstream side of the wet point. This 
means it has to take place from the single menisci in the 
capillary structure. Comparing the growth of waves on an 
infinite surface in a heat pipe and on a meniscus of hydraulic 
diameter d,, it is difficult to imagine that the capillary structure 
could do anything else than strongly hinder the growth of 
waves with I > 1.74dh. Therefore it is doubtful whether 
entrainment may occur from the menisci in a capillary driven 
heat pipe. 

The situation may well be different for gravity-assist heat 
pipes, where for a given capillary pressure much larger 
kinetic energy densities can be obtained than given by 
equation (32) if the hydrostatic driving pressure is large 
compared with the maximum capillary pressure. Con- 
sequently the numerical factor in (35) can be much smaller. 
For wavelengths 1<< d,,, however, one may expect that the 
damping effect of the capillary structure disappears and 
entrainment becomes possible. 

PHENOMENES D’ASSECHEMENT DANS LES CALODUCS A FLUX CAPILLAIRE 
ASSISTES PAR GRAVITE 

Resume-Le mecanisme physique est analysi de l’assdchement des caloducs a flux capillaire assist& par 
gravitt. 11 est ddmontre l’existance de deux types opposes d’assechement. ‘L’assbhement axial’ a son origine 
dans Ie manque de force hydrostatique et apparait lorsque le flux thermique augmente. Dans le cas de 
‘l’assechement azimutal’, c’est exactement le contraire. Les relations de base sont dtrivees pour l’apparition 
de ces types d’asst?chement. Un exemple explique leur evaluation. Des mtthodes sont discuttes pour 
l’emp&hement de l’assechement azimutal. Dans l’appendice on retrouve quelques commentaires critiques 
sur le role des forces d’inertie et d’entrainement dans les caloducs. 

H.M.T. 23/S-~ 



654 C. A. BUSSE and J. E. KEMMF 

AUSTROCKNUNGSERSCHEINUNGEN 1N SCHWERKRAFT-IJNTERSTUTZTEN WARME- 
ROHREN 

Zusammenfassung-Der physikalische Mechanismus des Austrocknens in schwerkraft-unterstitzten 
Wlrmerohren wird analysiert. Es wird gezeigt, dass es zwei gegensatzliche Arten des Austrocknens gibt. Das 
‘axiale Austrocknen’ entsteht durch einen Mangel an hydrostatischer Antriebskraft und tritt auf, wenn der 
Warmefluss zunimmt. Bei dem ‘azimutalen Austrocknen’ ist es gerade umgekehrt. Die grundlegenden 
Beziehungen fur das Auftreten dieser Arten des Austrocknens werden hergeleitet. Ihre Auswertung wird an 
einem Beispeil erlautert. Methoden zur Verhinderung des azimutalen Austrocknens werden diskutiert. Ein 
Anhang enthalt einige kritische Bemerkungen zur Rolle von Tragheitskrlften und des Mitreissens von 
Fliissigkeitstropfchen (Entrainment) in Wlrmerohren. 

3@QEKT OCYIIIEHMR B I-PABHTAHHOHHLIX TEIIJIOBbIX TPYbAX 
C KAIIMJIJDIPHbIM TPAHCIIOPTOM )IGIAKOCTM 

AHHoTa.a4na-~Hane3epyeTca~ase~ecK~1MeXaHw3MneneHRR OCyLLIeHHa B ~paBWTdUAOHHbIX'reIInOBblX 

rpy6ax C KanHJIJlSpHbIM TpaHCnOpTOM XWlKOCTH. nOKa3aHO HaJIH'iBe RByX COBepIUeHHO IlpOTkiBO- 

nOJlO)KHbIX TWIOB L,aHHOrO IIBJIeHBR. WiKCSiaJIbHOe OCyUIeHHeN B03HIIKaeT FIphi HeDOCTarKe rEiApO- 

CTaTWECKOii nB&iEylUefi CHJlbI H BO3paCTaHHH IUIOTHOCT1I TenJlOLlOI-0 IIOTOKB. B FIpOTkiBHOM CJly%le 

903HUKaeT(~aJRMyTa~bHOeOCyLlleHHe~).BbIBeneHbI OCHOBHbleCOOTHOLIJeHBll,OnHCbIBaI'JLLIHe B03HHKHO- 

seHHe3@eKTa Ocyureem. Ha npeMepenoKa3aHa uxo~leHra.PaccMoTpeHbl cnoco6bi IIpeLlOTBpaUeHHs 

BOSHHKHOBeHUR a3HMyTanbHOrO OCyIIIeHHFI. AaHbl HeKOTOpbIe KpHTHVEKIle 3aMeqaHWII 0 pOnw Clln 

IiHeplWi H yHOCa B TenJIOBbIX ‘rpy6ax. 


